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Fig. 1: We present VILA, a simple and effective method for long-horizon robotic task planning. By integrating vision directly
into the reasoning process, VILA can leverage the wealth of commonsense knowledge grounded in the visual world. This
results in remarkable performance in tasks that demand an understanding of spatial layouts (top row), object attributes (middle
row), and tasks with multimodal goals (bottom row).

Abstract—In this study, we are interested in imbuing robots
with the capability of physically-grounded task planning. Recent
advancements have shown that large language models (LLMs)
possess extensive knowledge useful in robotic tasks, especially
in reasoning and planning. However, LLMs are constrained
by their lack of world grounding and dependence on external
affordance models to perceive environmental information, which
cannot jointly reason with LLMs. We argue that a task planner
should be an inherently grounded, unified multimodal system.
To this end, we introduce Robotic Vision-Language Planning
(VILA), a novel approach for long-horizon robotic planning that
leverages vision-language models (VLMs) to generate a sequence
of actionable steps. VILA directly integrates perceptual data
into its reasoning and planning process, enabling a profound
understanding of commonsense knowledge in the visual world,

∗ The first two authors contributed equally.
† Correspondence to: Yang Gao <gaoyangiiis@tsinghua.edu.cn>.

including spatial layouts and object attributes. It also supports
flexible multimodal goal specification and naturally incorporates
visual feedback. Our extensive evaluation, conducted in both
real-robot and simulated environments, demonstrates VILA’s
superiority over existing LLM-based planners, highlighting its
effectiveness in a wide array of open-world manipulation tasks.

I. INTRODUCTION

Scene-aware task planning is a pivotal facet of human
intelligence [83, 75]. When presented with a simple language
instruction, humans demonstrate a spectrum of complex be-
haviors depending on the context. Take the instruction “get a
can of coke,” for example. If a coke can is visible, a person
will immediately pick it up. If not, they will search locations
like the refrigerator or storage cabinets. This adaptability
reflects humans’ deep understanding of the scene and exten-
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sive common sense, enabling them to interpret instructions
contextually. In this paper, we explore how we can create an
embodied agent, such as a robot, that emulates this human-like
adaptability and exhibits long-horizon task planning in varying
scenes.

In recent years, large language models (LLMs) [9, 62, 13, 6]
have showcased their remarkable capabilities in encoding
extensive semantic knowledge about the world [65, 42, 29].
This has sparked a growing interest in leveraging LLMs
for generating step-by-step plans for complex, long-horizon
tasks [2, 37, 38]. However, a critical limitation of LLMs is their
lack of world grounding — they cannot perceive and reason
about the physical state of robots and their environments,
including object shapes, physical properties, and real-world
constraints.

To overcome this challenge, a prevalent approach involves
employing external affordance models [27], such as open-
vocab detectors [57] and value functions [2], to provide real-
world grounding for LLMs [2, 40]. However, these modules
often fail to convey the truly necessary task-dependent in-
formation in complex environments, as they serve as one-
directional channels transmitting perceptual information to
LLMs. In this scenario, the LLM is like a blind person, while
the affordance model serves as a sighted guide. On the one
hand, the blind person relies solely on their imagination and
the guide’s limited narrative to comprehend the world; on the
other hand, the sighted guide may not accurately comprehend
the blind person’s purpose. This combination often leads to
unfeasible or unsafe action plans in the absence of precise,
task-relevant visual information. For instance, a robot tasked
with taking out a Marvel model from a shelf (see Figure 1
(d)) may overlook obstacles like the paper cup and coke can,
leading to collisions. Consider another example of preparing
art class (see Figure 1 (h)), scissors can be perceived as sharp
and hazardous objects, or as essential tools for handicrafts.
This distinction is challenging for the vision module due to
the lack of specific task information. These examples highlight
the limitations of LLM-based planners in capturing intricate
spatial layouts and fine-grained object attributes, underscoring
the necessity for active joint reasoning between vision and
language.

The recent advancements in vision-language models
(VLMs), exemplified by GPT-4V(ision) [61, 88], have signifi-
cantly broadened the horizons of research. VLMs synergize
perception and language processing into a unified system,
enabling direct incorporation of perceptual information into
the language model’s reasoning [53, 14, 5, 97]. Building upon
these developments, we introduce Robotic Vision-Language
Planning (VILA) — a simple, effective, and scalable method
for long-horizon robotic planning. VILA distinguishes itself
from previous LLM-based planning methods by eschewing
independent affordance models and instead directly prompting
VLMs to generate a sequence of actionable steps based on
visual observations of the environment and high-level language
instructions. VILA exhibits the following key properties absent
in LLM-based planning methods:

• Profound Understanding of Commonsense Knowledge
Grounded in the Visual World. VILA excels in com-
plex tasks that demand an understanding of spatial lay-
outs (e.g., Take Out Marvel Model) or object at-
tributes (e.g., Stack Plates Steadily). This kind
of commonsense knowledge pervades nearly every task
of interest in robotics, but previous LLM-based planners
consistently fall short in this regard.

• Versatile Goal Specifiaction. VILA supports flexible
multimodal goal specification approaches. It is capable
of utilizing not just language instrctions but also diverse
forms of goal images, and even a blend of both language
and images, to define objectives effectively.

• Visual Feedback. VILA effectively utilizes visual feed-
back in an intuitive and natural way, enabling robust
closed-loop planning in dynamic environments.

We conduct a systematic evaluation of VILA across 16 real-
world, everyday manipulation tasks, which involve a diverse
range of open-set instructions and objects. VILA consistently
outperforms LLM-based planners, such as SayCan [2] and
Grounded Decoding [40], by a significant margin. To facilitate
a more exhaustive and rigorous comparison, we extend our
evaluation to include 16 simulated tasks based on the RAVENS
environment [93], wherein VILA continues to show marked
enhancements. All these outcomes provide compelling evi-
dence that VILA possesses the potential to serve as a universal
task planning method for general-purpose robotic systems.

II. RELATED WORK

Vision-Language Models. The striking advancements made
by scaling up large language models (LLMs) [9, 62, 13, 79, 31]
have sparked a surge of interest in similarly expanding large
vision-language models (VLMs) [23, 61, 88]. The prevalent
approach to construct VLMs involves employing a cross-
modal connector to align the features of pre-trained visual
encoders with the input embedding space of the LLMs [3,
53, 52, 10, 47, 36, 90, 97, 5, 81]. The ability of VLMs to
understand both images and text renders them highly adaptable
for a range of applications, including visual question answer-
ing [4, 92], image captioning [1, 34], and optical character
recognition [48]. In contrast to these uses, our study takes a
different path. We concentrate on harnessing the rich world
knowledge and the visually grounded attribute of VLMs to
address complex long-horizon planning challenges in robotics.
Pre-Trained Foundation Models For Robotics. Recent ad-
vancements in applying large pre-trained foundation models
to robotics can be classified into three categories:

(1) Pre-Trained Vision Models: A wealth of prior ap-
proaches employ vision models pre-trained on large-scale
image datasets [28, 15] to generate visual representations for
visuomotor control tasks [64, 85, 67, 59, 55, 95]. Nonetheless,
a robotic system encompasses more than just a perception
module; it includes a control policy as well. Relying solely on
visual representations that capture high-level semantics may
not ensure the control policy’s generalizability or the system’s
overall effectiveness [35, 91, 30].



(2) Pre-Trained Language Models: Another research avenue
explores the use of large language models (LLMs) for robotic
tasks, particularly in reasoning and planning [37, 2, 73, 84,
74, 51, 80, 50, 16, 68]. However, to ground these language
models in physical environments, auxiliary modules such as
affordance models [40], perception APIs [49], and textual
scene descriptions [38, 94] are essential. In contrast, our
work emphasizes generating plans without depending on these
auxiliary models for grounding. This approach allows for the
seamless integration of perceptual information directly into the
reasoning and planning process.

(3) Pre-Trained Vision-Language Models: Numerous stud-
ies have explored the application of vision-language models
(VLMs) in robotics [39, 19, 70, 96, 24]. Notably, RT-2 [8]
demonstrates the integration of VLMs in low-level robotic
control. In contrast, our research is primarily centered on
high-level robotic planning. Although PaLM-E [18] shares
similarities with our approach, it necessitates training on a
substantial mixture of robotics and general visual-language
data [11, 54]. This approach implies that introducing a robot
to a new environment necessitates the collection of additional
data and subsequent retraining of the model. In stark contrast,
our VILA stands out as an open-world, zero-shot model.
It is capable of performing a broad spectrum of everyday
manipulation tasks without additional training data and in-
context examples in the prompt.

Task and Motion Planning. Task and Motion Planning
(TAMP) [43, 26] stands as a critical framework in solving
long-horizon planning tasks, integrating low-level continu-
ous motion planning [46] with high-level discrete task plan-
ning [22, 69, 60]. While traditional research in this domain
has predominantly centered on symbolic planning [22, 60] or
optimization-based methods [77, 78], the advent of machine
learning [87, 20, 25, 41] and LLMs [16, 12, 72, 86] is
revolutionizing this arena. In our work, we leverage VLMs
to comprehend the robot environment and interpret high-level
instructions. By incorporating commonsense knowledge that is
intrinsically grounded in the visual world, our approach excels
in handling complex tasks beyond the reach of previous LLM-
based planning methods.

III. METHOD

We first provide the formulation of the planning problem
in Sec. III-A. Subsequently, we present how VILA utilize
vision-language models as robot planners (Sec. III-B). Finally,
we describe unique properties of VILA that contribute to its
advantages (Sec. III-C).

A. Problem Statement

Our robotic system takes a visual observation xt of the en-
vironment and a high-level language instruction L (e.g. “stack
these containers of different colors steadily”) that describes
a manipulation task. We assume that the visual observation
xt serves as an accurate representation of world state. The
language instruction L can be arbitrarily long-horizon or
under-specified (i.e., requires contextual understanding). The

Algorithm 1 VILA

Require: Initial visual observation x1, a high level instruction
L and a set of skills Π.

1: t = 1, ℓ1 = ∅
2: while ℓt−1 ̸= “done” do
3: p1:N = VLM(xt,L, ℓ1, ..., ℓt−1) ▷ Get plan steps
4: ℓt = p1 ▷ Select the first step
5: Execute skill πℓt(xt), updating observation xt+1

6: t = t+ 1
7: end while

central problem investigated in this work is to generate a
sequence of text actions, represented as ℓ1, ℓ2, · · · , ℓT . Each
text action ℓt is a short-horizon language instruction (e.g. “pick
up blue container”) that specifies a sub-task/primitive skill
πℓt ∈ Π. Note that our contributions do not focus on the
acquisition of these skills Π; rather, we assume that all the
necessary skills are already available. These skills can take the
form of predefined script policies or may have been acquired
through various learning methods, including reinforcement
learning (RL) [76] and behavior cloning (BC) [66].

B. Vision-Language Models as Robot Planners

To generate feasible plans, high-level robot planning must
be grounded in the physical world. While LLMs possess a
wealth of structured world knowledge, their exclusive reliance
on language input necessitates external components, such as
affordance models, to complete the grounding process. How-
ever, these external affordance models (e.g., value functions of
RL policies [2, 44], object detection models [57], and action
detection models [71]) are manually designed as independent
channels, operating separately from LLMs, rather than being
integrated into an end-to-end system. Moreover, their role is
solely transmitting high-dimensional visual perceptual infor-
mation to LLMs, lacking the capability for joint reasoning.
This separation of vision and language modalities results in
the vision module’s inability to provide comprehensive, task-
relevant visual information, thereby hindering the LLM from
planning based on accurate task-related visual insights.

Recent advances in vision-language models (VLMs) of-
fer a solution. VLMs demonstrate unprecedented ability in
understanding and reasoning across both images and lan-
guage [53, 14, 5, 97]. Crucially, the extensive world knowledge
encapsulated in VLMs is inherently grounded in the visual data
they process. Therefore, we advocate for directly employing
VLMs that synergizes vision and language capabilities to
decompose a high-level instruction into a sequence of low-
level skills.

We refer to our method as Robotic Vision-Language Plan-
ning (VILA). Concretely, given current visual observation xt

of environment and a high-level language goal L, VILA op-
erates by prompting the VLMs to yield a step-by-step plan
p1:N . We enable closed-loop execution by selecting the first
step as the text action ℓt = p1. Once the text action ℓt is
selected, the corresponding policy πℓt is executed by the robot



Robot Execution
Vision
Language
Model
(GPT-4V)

My child wants to play with a Marvel 
model, please take one out for him.

User

Task-Related Objects and Locations:
1. Marvel Model (item to be retrieved)
2. Pepsi Can (blocking object)
3. Shelf (storage location)

Chain-of-Thought

1. Pick up paper cup
2. Place paper cup on table

Finished Plan

Current Observation

3. Pick up pepsi can
4. Place pepsi can on table
5. Pick up Marval model
6. Place Marvel model on table
7. Done

Task Plan

Add to Finished Plan

Fig. 2: Overview of VILA. Given a language instruction and current visual observation, we leverage a VLM to comprehend
the environment scene through chain-of-though reasoning, subsequently generating a step-by-step plan. The first step of this
plan is then executed by a primitive policy. Finally, the text action that has been executed is added to the finished plan, enabling
a closed-loop planning method in dynamic environments.

and the VLM query is amended to include ℓt and the process
is run again until a termination token (e.g., “done”) is reached.
The entire process is shown in Figure 2 and described in
Algorithm 1.

In our study, we utilizes GPT-4V(ision) [61, 88] as the
VLM. GPT-4V, trained on vast internet-scale data, exhibits
exceptional versatilities and extremely strong generalization
capabilities. These attributes make it particularly adept at
handling open-world scenarios presented in our paper. Fur-
thermore, we find that VILA, powered by GPT-4V, is capable
of solving a variety of challenging planning problems, even
when operating in a zero-shot mode (i.e., without requiring any
in-context examples). This significantly reduces the prompt
engineering efforts required in previous approaches [2, 37, 40].

C. Intriguing Properties of VILA

In this section, we delve deeper into VILA, shedding light
on its advantages and differentiations from previous planning
methods.
Comprehension of Common Sense in the Visual World.
Previous studies primarily focus on leveraging the knowledge
of LLMs for high-level planning [2, 37], centering on language
while often overlooking the crucial role of vision. Images and
languages, as distinct types of signals, offer unique nature:
languages are human-generated and semantically rich, yet they
are limited in their ability to represent comprehensive infor-
mation. In contrast, images are natural signals imbued with
low-level fine-grained features, a single image can capture the
entirety of a scene’s information. This disparity is especially
pertinent when the complex environment is challenging to
encapsulate in simple language. Directly integrating images
into the reasoning and planning process, such as in the case of
VILA, allows for a more intuitive understanding of common-
sense knowledge grounded in the physical world. Specifically,
this understanding manifests in two key aspects:

1) Spatial Layout Understanding: Describing complex ge-
ometric configurations, particularly spatial localization, object
relationships, and environmental constraints, can be challeng-
ing with just simple language. Consider a cluttered scene
where object A obscures object B. To reach object B, one must
first reposition object A. Relying solely on verbal language
descriptions to convey these nuanced relationships between
objects is inadequate. Moreover, consider a situation where
the desired object is inside a container (like a cabinet or
refrigerator). In that case, if an external affordance model
(like object detection model) is utilized, since the desired
object is not visible, the affordance model would predict a
zero probability of successful retrieval, leading to task failure.
However, by directly incorporating vision into the reasoning
process, VILA can deduce that the sought object, hidden from
view, is likely inside the container. This realization necessitates
opening the container as a preliminary step to accomplish the
task.

2) Object Attribute Understanding: An object is defined by
multiple attributes, including its shape, color, material, func-
tion, etc. However, the expressive capacity of natural language
is limited, making it a somewhat cumbersome medium for
conveying these attributes comprehensively. Furthermore, note
that an object’s attributes is intricately tied to the specific tasks
at hand. For example, scissors might be deemed hazardous for
children, but they become essential tools during a paper-cutting
art class. Previous approaches employ a standalone affordance
model to identify object attributes, but this method can only
convey a limited subset of attributes in a unidirectional manner.
Therefore, active joint reasoning between image and language
emerges as a crucial necessity when our tasks demand a
thorough understanding of an object’s attributes.

Versatile Goal Specification. In many complex, long-term
tasks, using a goal image to represent the desired outcome is



Please pass me the blue empty plate.

1. Pick up apple
2. Place apple on table

3. Pick up banana
4. Place banana on table

5. Pick up blue plate
6. Place blue plate in human hand

We are having an art class, please prepare an area for the children.

1. Pick up screwdriver
2. Place screwdriver in box

3. Pick up knife 4. Place knife in box

Language
Pick up blue plate

Pick up apple

Pick up vase

1.00

Pick up scissors

0.84

Pick up paper

0.21

Pick up knife

0.02

0.01

Affordance
Combined Score: 1.00

Fig. 3: Illustration of the execution of VILA (left) and the decision-making process of SayCan (right). In the Bring
Empty Plate task, the robot must first relocate the apple and banana from the blue plate. However, SayCan’s initial step is
to directly pick up the blue plate. In the Prepare Art Class task, while the scissor is supposed to remain on the table,
SayCan erroneously picks up the scissor and places it in a box.

often more effective than relying solely on verbal instructions.
For example, to direct a robot to tidy a desk, providing a photo
of the desk arranged as desired can be more efficient. Likewise,
for food plating tasks, a robot can replicate the arrangement
from an image. Such tasks, previously unattainable with LLM-
based planning methods, are now remarkably straightforward
with VILA. Specifically, VILA can not only accepts current
visual observation xn and language instructions L as inputs
but also incorporates a goal image xg . This feature sets it
apart from many existing goal-conditioned RL/IL algorithms
[58, 21, 17], as it does not require the goal and visual
observation images to originate from the same domain. The
goal image merely needs to convey the essential elements of
the task, offering flexibility in its form – it could range from an
internet photo to a child’s drawing, or even an image showing a
target location indicated by a pointing finger. This versatility
greatly enhances the system’s practicality. Additionally, the
ability to combine images and language in describing task
goals introduces an additional layer of flexibility and diversity
in our goal specification approach.

Visual Feedback. The embodied environments are inherently
dynamic, making closed-loop feedback essential for robots. In
an effort to incorporate environment feedback into planning
methods that rely solely on LLMs, Huang et al. [38] investigate
converting all feedback to natural language. However, this
approach proves to be cumbersome and ineffective because
most of the feedback is initially observed visually. Converting

visual feedback into language not only adds complexity to the
system but also risks losing valuable information. We believe
that providing visual feedback directly is a more intuitive and
natural approach, as demonstrated in VILA. Within VILA, the
VLM serves both as a scene descriptor to recognize object
states and as a success detector to determine if the environment
satisfies the success conditions defined by the instructions. By
reasoning over visual feedback, VILA enables robots to make
corrections or replan in response to changes in the environment
or when a skill fails.

IV. EXPERIMENTS AND ANALYSIS

In this section, we first carry out extensive experiments in
a real-world system to evaluate VILA’s capability in planning
everyday manipulation tasks (Sec. IV-A). Subsequently, we
conduct a detailed quantitative comparison of VILA against
baseline methods within a simulated tabletop environment
(Sec. IV-B).

A. Real-World Manipulation Tasks

Experimental Setup.
1) Hardware: We set up a real-world tabletop environment.

We use a Franka Emika Panda robot (a 7-DoF arm) and a 1-
DoF parallel jaw gripper. For perception, we use a Logitech
Brio color camera mounted on a tripod, at an angle, pointing
towards the tabletop. To ensure consistency in our experiments,
we maintain a fixed camera view for all tasks, but for visual
aesthetics, we record video demos at different views.



Task SayCan GD VILA

Pour Chips 20% 40% 80%
Bring Pepsi Can 40% 30% 90%
Bring Empty Plate 0% 0% 100%
Take Out Marvel Model 0% 10% 70%

Righteous Characters 0% 10% 80%
Pick Fresh Fruits 20% 30% 80%
Stack Plates Steadily 20% 10% 70%
Prepare Art Class 0% 30% 70%

Total 13% 20% 80%

TABLE I: Quantitative evaluation results in tasks requiring
rich commonsense knowledge. VILA demonstrates superior
performance in tasks necessitating a understanding of spatial
layouts (top half) and object attributes (bottom half).

2) Tasks and Evaluation: We design 16 long-horizon ma-
nipulation tasks to assess VILA’s performance in three do-
mains: comprehension of commonsense knowledge in the
visual world (8 tasks), flexibility in goal specification (4 tasks),
and utilization of visual feedback (4 tasks). Figure 1 illustrates
a selection of 12 tasks, drawn from the first two domains. For
each task, we evaluate all methods across the 10 different
variations of the environment, including changes in scene
configuration and lighting conditions, etc. For comprehensive
details of each task, please see the Appendix.

3) VLM and Prompting: We use GPT-4V from OpenAI API
as our VLM. Unlike previous approaches [2, 40], we do not
include any in-context examples in the prompt, but only use
high-level language instructions and some simple constraints
that the robot needs to meet (i.e., strict zero-shot). The full
prompt is shown in the Appendix.

4) Primitive Skills: We use five categories of primitive
skills that lend themselves to complex behaviors through
composition and planning. These include “pick up object”,
“place object in/on object”, “open object”, “close
object”, and “pour object into/onto object”. We con-
centrate on high-level, temporally extended planning rather
than acquiring low-level primitive skills, which is orthogonal
to our study. Therefore, we employ script policies as the
primitive skills for both the baselines and VILA. Additional
details of low-level primitive skills are in the Appendix.

5) Baselines: We compare with SayCan [2] and Grounded
Decoding (GD) [40], which both ground LLMs with external
affordance models. Implementing these baselines necessitates
accessing output token probabilities from LLMs. However,
since OpenAI API currently does not return these probabil-
ities, we employ the open-source Llama 2 70B [79] as an
alternative. For the affordance models, we utilize the open-
vocabulary detector OWL-ViT [57, 56], following Huang et
al [40].
VILA can understand commonsense knowledge in the
visual world. In Table I, we compare the planning success
rates on tasks that require understanding of spatial layouts

0.00 25.00 50.00 75.00 100.00

SayCan

GD

ViLa

Response Structure Error Perception Error Understanding Error No Error

Fig. 4: Error breakdown of VILA and baselines. By
leveraging commonsense knowledge grounded in the visual
world, VILA significantly reduces understanding error.

and object attributes (see Figure 1 (a-h) for illustrations of
the tasks). VILA stands out with an average success rate
of 80% across 8 tasks, significantly surpassing the perfor-
mances of SayCan and GD, which achieve success rates of
only 13% and 20%, respectively. Particularly in intricate and
challenging tasks such as Take Out Marvel Model (it’s
crucial to avoid the cup and coke can) and Righteous
Characters 1, SayCan and GD’s success rates are close to
zero. These tasks all necessitate the integration of images into
the reasoning and planning processes and a deep understanding
of commonsense knowledge in the visual world. Furthermore,
the tasks outlined in Table I are representative of typical real-
world scenarios and are not specifically tailored for VILA. The
across-the-board exceptional performance of VILA not only
highlights its superior generalizability but also underscores its
potential as a universal planner for open-world tasks.

Figure 3 shows two environment rollouts comparing
VILA with SayCan. In the first Bring Empty Plate task,
VILA identifies the need to relocate the apple and banana
from the blue plate before picking it up. In contrast, SayCan
recognizes the items (apple, banana, blue plate) but lacks
awareness of their spatial relationship, leading it to attempt
picking up the blue plate directly. This highlights the signif-
icance of comprehending complex geometric configurations
and environmental constraints visually. In another scenario
involving the preparation of a safe area for a children’s art
class (Prepare Art Class), VILA discerns that only the
screwdriver and fruit knife are hazardous, sparing the scissors
necessary for the class, based on the contextual clue of
paper cuttings on the table. However, SayCan misclassifies the
scissors as dangerous, showing that a comprehensive, global
visual understanding is crucial to accurately assess object
attributes. The videos of experiment rollouts can be found on
the project website: robot-vila.github.io.

In Figure 4, we present a failure breakdown analysis.
“Response structure error” here refers to errors of LLMs and
VLMs in generating plan steps that fall outside our predefined

1Choose righteous characters from three Marvel models, while referring to
the model only by its color. Details of this task are in Appendix.

https://openai.com/api/
https://openai.com/api/
https://robot-vila.github.io/


Goal Image Initial Obs. Final Obs.

Arrange the sushi similar to the one in the first picture.

Task Plan

I need to put the two vegetables in picture 2 
onto the plate pointed by the finger in picture 1.

1. Pick up shrimp sushi
2. Place shrimp sushi on the left side of the plate
3. Pick up salmon sushi
4. Place salmon sushi in the center of the plate
5. Pick up tuna sushi
6. Place tuna sushi on the right side of the plate
7. Done

1. Pick up carrot
2. Place carrot on pink plate
3. Pick up tomato
4. Place tomato on pink plate
5. Done

Task Plan

Goal Image Initial Obs. Final Obs.

Fig. 5: Illustration of the execution of VILA on image goal-conditioned tasks. In the Arrange Sushi task,
VILA generates a plan to arrange sushi based on a reference image. In the Pick Vegetables task, the scenario involves
a table set with a pink plate, a black sushi plate, a pizza plate, and a green snack plate. Here, VILA deduces from pointing
finger in the goal image that the vegetables should be placed on the pink plate.

Task Goal Type Succ. %

Arrange Sushi Real Image 80%
Arrange Gigsaw Pieces Drawing 100%
Pick Vegetables Pointing Finger 100%
Tidy Up Study Desk Image + Language 60%

TABLE II: Quantitative evaluation results of VILA in tasks
featuring multimodal goals.

set of primitive skills. In the case of baselines, “perception
error” denotes failures within the open-vocab detector [56].
While VLMs lack a separate perception module, their output,
as observed in the chain-of-thought process [82], occasionally
fails to recognize some objects. The dominant error in baseline
models is “understanding error”, which involves errors in
understanding the complex spatial layouts and object attributes
in the physical world, such as occlusions and context-specific
attributes. VILA significantly reduces the “understanding er-
ror” by seamlessly integrating vision and language reasoning,
thereby resulting in the lowest overall error. Furthermore,
we suggest that careful prompt engineering (i.e., providing
examples in the prompt) [9, 63] could steer VLM outputs to-
wards admissible primitive skills, thereby reducing “response
structure error”.

VILA supports flexible multimodal goal specification. We

introduce a suite of 4 tasks, each with distinct goal types, as
illustrated in Figure 1 (i-l). The quantitative results are shown
in Table II, where VILA demonstrates strong capabilities
across all tasks. Utilizing the internet-scale knowledge imbued
in GPT-4V, VILA exhibits the remarkable ability to understand
a variety of goal images. This includes interpreting vibrant
children’s drawings for puzzle completion, preparing a sushi
platter by referencing a photograph of the dish (illustrated in
Figure 5 top row), and even accurately identifying the intended
arrangement of vegetables as indicated by a human finger
(refer to Figure 5 bottom row). Additionally, we explore goal
specification through a combination of image and language
instructions. For instance, in the Tidy Up Study Desk
task, we not only provide an image of a neatly organized
desk as the target but also verbally direct the swapping of
two specific objects on the desk. Leveraging its dual-capacity
in vision and language reasoning, VILA consistently achieves
success in this task as well.
VILA can leverage visual feedback naturally. We design 4
tasks that require real-time visual feedback for successful exe-
cution. In the Stack Blocks task, we inject Gaussian noise
into the joint position controller, which increases the likelihood
of failure in the primitive policy. For the Pack Chip Bags
task, task progress is reverted by an experimenter who takes
out previously packed chip bags from the box. In the Find
Stapler task, the stapler’s location varies among three
potential places: the top drawer, the bottom drawer, or the



Put the stapler on the table.

Initial Obs.

1. Open top drawer 2. Close top drawer
3. Open bottom drawer

4. Pick up stapler
5. Close bottom drawer
6. Place stapler on table

No Stapler Find Stapler

Fig. 6: Illustration of the execution of VILA on the Find Stapler task. By incorporating visual feedback and replanning
at every step, VILA is able to continue exploring the bottom drawer when it does not find the stapler in the top drawer, thereby
successfully locating the stapler.

Task Open-Loop w/ Feedback

Stack Blocks 20% 90%
Pack Chip Bags 0% 100%
Find Stapler 30% 90%
Human-Robot Interaction 20% 80%

TABLE III: Open-loop VILA vs. closed-loop VILA. By
leveraging visual feedback, closed-loop VILA substantially
outperforms the open-loop variant.

Blocks & Bowls Letters

Fig. 7: Simulated environment based on RAVENS. We
design 16 distinct tasks, which are grouped into two categories:
Blocks & Bowls (left) and Letters (right).

cabinet. The Human-Robot Interaction task requires
the robot to pause until a person retrieves the cola it has picked
up. We evaluate the performance of VILA against an open-
loop variant that formulates a plan based solely on the initial
observation. The quantitative results, presented in Table III,
reveal that the open-loop variant struggles with these dynamic
tasks that demand continuous replanning, while the closed-
loop VILA significantly outperforms it. VILA is not only able
to effectively recover from external disturbances but can also
adapt its strategy based on real-time visual observations. A
case in point, depicted in Figure 6, is when VILA, not finding
the stapler in the top drawer, proceeds to check the bottom
drawer, successfully locates the stapler, and completes the task.

CLIPort LLM
GD VILA

Tasks Short Long Llama 2 GPT-4

Seen Tasks
Blocks & Bowls 3.3% 68.3% 1.7% 0% 18.3% 78.3%

Letters 0% 40.0% 25.0% 25.0% 51.7% 88.3%

Unseen Tasks
Blocks & Bowls 6.0% 6.0% 20.0% 22.0% 23.0% 81.0%

Letters 1.0% 0% 15.0% 15.0% 42.0% 82.0%

TABLE IV: Average success rate in simulated environment.
See the Appendix for a detailed breakdown. VILA consistently
outperforms baselines across seen and unseen tasks.

B. Simulated Tabletop Rearrangement

Experimental Setup. We conduct experiments on simulated
tabletop rearrangement tasks to provide a more rigorous and
fair comparison with baseline methods. Following the setting
in Grounded Decoding [40], we develop 16 tasks based on
the RAVENS environment [93]. These tasks are categorized
into two groups: a seen group, consisting of 6 tasks used for
few-shot prompting or as training for supervised baselines,
and an unseen group of 10 tasks. Each task requires a UR5
robot to rearrange the objects on the table in some desired
configuration, specified by high-level language instructions.
The tasks are further classified into two types (see Figure 7):
(i) Blocks & Bowls (8 tasks), which focus on rearranging
or combining blocks and bowls (e.g., “put all the blocks in the
bowls with matching colors”). (ii) Letters (8 tasks), which
involve rearranging alphabetical letters (e.g., “put the letters
on the tables in alphabetical order”).

Our comparison encompasses three baseline categories: (i)
CLIPort, a language-conditioned imitation learning agent that
directly take in the high-level language instructions without a
planner. We consider two variants: “Short”, trained on single-
step pick-and-place instructions, and “Long”, trained on high-
level instructions. (ii) An LLM-based planner that does not



relay on any grounding/affordance model. We evaluate Llama
2 and GPT-4. (iii) Grounded Decoding (GD), which integrates
an LLM with an affordance model for enhanced planning.
Here, Llama 2 is used as the LLM. For the Blocks &
Bowls, affordances are derived from CLIPort’s predicted
logits, while for Letters, we use ground-truth affordance
values obtained from simulation. We use script policies as the
primitive skills for LLM-based planner, GD and our VILA.

Analysis. The results are presented in Table IV, where each
method is evaluated over 20 episodes per task within each cat-
egory. We observe that CLIPort-based methods have a limited
capacity for generalizing to novel, unseen tasks. Given that
GD requires access to the output token probabilities of LLMs,
we employ Llama 2 instead of GPT-4 for GD. As depicted
in Table IV, both Llama 2 and GPT-4 exhibit comparable
performances across all tasks, ensuring a fair comparison be-
tween GD and VILA (utilizing GPT-4V). While GD surpasses
other LLM-based planning methods by leveraging an external
affordance model, it significantly lags behind VILA. This
finding further highlights the benefits of synergistic reasoning
between vision and language for high-level robotic planning.

V. CONCLUSION, LIMITATIONS, & FUTURE WORKS

In this work, we present VILA, a novel approach for
robotic planning that utilizes VLMs to decompose a high-
level language instruction into a sequence of actionable steps.
VILA integrates perceptual information into the reasoning and
planning process, enabling the understanding of commonsense
knowledge in the visual world (e.g., spatial layouts and object
attributes). It also supports flexible multimodal goal specifi-
cation and naturally integrates visual feedback. Our extensive
evaluation, conducted in both real-world and simulated set-
tings, demonstrate VILA’s effectiveness in addressing a variety
of complex, long-horizon tasks.

VILA has several limitations that future work can improve.
First, we presuppose the existence of all single-step primitive
skills. While obtaining robust low-level control policies re-
mains a challenging problem, recent advancements in transfer-
ring web knowledge to robotic control [7, 8] holds promise for
enabling the cultivation of a repertoire of generalizable skills.
Secondly, our dependence on a black-box VLM hampers
steerability and complicates the explanation of certain errors.
Future developments could leverage parameter-efficient fine-
tuning methods [32, 33] to customize VLMs [24]. Finally,
our current approach excludes in-context examples within
prompts, leading to a more versatile output format. Methods
developed for prompting [45, 89] can also be used to refine
output consistency.
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